Load based testing of wind turbine control systems using Hardware-in-the-Loop

03. November 2016

morewind

6

morewind was founded in 2013

Alles im grünen Bereich.

• Team of engineers with more than 10 years of experience in the wind energy sector

Ocean Breeze Energy

Control technology is a major enabler for further CoE reduction in wind energy

Control development workflow

New technology	Turbine concept	Turbine final design	Validation & Verification
 Development of new control and safety features with the target to reduce loads and increase AEP Development of new secondary functions concepts for better grid integration 	 Main Control system design (pitch, torque contrlol, safety Sys) Load Simulation with compiled control system Requirements for secondary control functions 	 Final load simulation and control parameter freeze Implementation of main control scheme on PLC Implementation of secondary control functions on PLC 	 Subsystem testing Functional control test Hardware testbench like pitchdrives, gearbox Prototype testing Load, Power Performance and Power Quality Testing
	Use of Matlab/Simulink combined with load simulation software	Use of code generation from Matlab/Simulink to PLC	Requirement for Hardware-in-the- loop testing

Code generation process

PLC Software Testing

Software Testing

7

Prototype Testing

- Wind speed is measured at one point upwind
- Problems are found when it's too late
- Risks in case of instability

Prototype Testing: transient event

- Component level testing is done with rudimentary turbine models
- Prototype testing is costly, difficult and under time pressure

• Need for more consistent component and subsystem level testing

This approach supports the requirements for the LRF verification by functional testing according to GL2010 guideline

HIL Testing for Pitch Systems

- · Possibility to test underlying control loops in pitch inverters
- Testing of pitch system components under "real" loading conditions

Generator HIL-Testbench

Goal:

- Generator testing
- Inverter testing
- Control system testing

Under construction

HIL Setup

- Simulation based on load simulation software FAST/AD from NREL
- Load based validation approach
- · Possibility to extend hardware side, i. e. pitch drives
- · Possibility to extend sim side, i. e. thermal behaviour

Real Wind Turbine PLC

PC with:

- Simulation control: mwLoADS
- Controller HMI
- Visualization

Simulation on Axiocontrol – AXC 3051

open PLC architecture

Enables data exchange between real time simulation running under Linux environment and PLC task

Other Solution for higher performance

- PC with high performance CPU
- Dedicated I/O Card

• LINUX PREEMPT-RT

- → Expensive I/O card
- → dedicated API needs to be developed

Aero-elastic simulation model

Source: NREL

A dedicated API with real time application was developed by morewind to exchange values between FAST and PLC

Load Comparison as Test Criteria

Test criteria:

- statistical quantities
- Damage equivalent loads
- Differences in Behavior like stops

		LSSGagMxa (kN∙m)		
- - - - - - - - - - - - - - - - - - -	m	101	501	Difference
	3.00	575.82	651.09	13.07%
	4.00	677.80	771.70	13.85%
	5.00	820.83	931.44	13.48%
	6.00	957.26	1077.59	12.57%
	7.00	1077.56	1202.69	11.61%
	8.00	1182.49	1309.43	10.73%
	9.00	1274.38	1401.44	9.97%
	10.00	1355.38	1481.73	9.32%
	11.00	1427.30	1552.62	8.78%
	12.00	1491.57	1615.88	8.33%
	mean	2508.48	2537.11	1.14%

Outlook

• From demonstrator to full scale test rig

• Use of HIL-setup to support wind farm operators in:

Retrofit solutions

Load related root cause analysis

Lifetime extension

MOREwind engineering solutions GmbH Friedrichstraße 11 18057 Rostock, Germany Tel: +49 (0) 381 377 97 692

E-Mail: info@morewind-engineering.de

make **more** out of your **wind** solutions